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Abstract

In this paper the Adomian decomposition method is used to evaluate the efficiency and the optimal length of a

convective rectangular fin with variable thermal conductivity, and to determine the temperature distribution within the

fin. It is a useful and practical method, which can be used to solve the nonlinear energy balance equations which are

associated with variable thermal conductivity conditions. The Adomian decomposition method provides an analytical

solution in the form of an infinite power series. From a practical perspective, it is necessary to evaluate this analytical

solution, and to obtain numerical values from the infinite power series. This requires series truncation, and a practical

procedure to accomplish the task. Together, these transform the analytical results into a solution with a finite degree of

accuracy. The accuracy of the Adomian decomposition method with a varying number of terms in the series is in-

vestigated by comparing its results with those generated by a finite-difference method which uses a Newton linearization

scheme. � 2002 Published by Elsevier Science Ltd.
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1. Introduction

Fins are widely used to enhance the heat transfer

between a solid surface and its convective, radiative, or

convective–radiative surface [1]. A considerable amount

of research has been conducted into the variable thermal

parameters which are associated with fins operating in

practical situations. For example, Razelos and Imre [2]

considered the variation of the convective heat transfer

coefficient from the base of a convecting fin to its tip. If a

large temperature difference exists within the fin, the

dependence of the thermal conductivity of the fin on

the temperature can be significant. It would seem that

the study of heat transfer in fins with variable thermal

parameters is in order. Hung and App [3] presented the

performance of a straight fin with temperature-depen-

dent conductivity and internal heat generation, while

Jany and Bejan investigated the optimum shape for

straight fins with temperature-dependent conductivity

[4]. The governing equation of fins with temperature-

dependent conductivity is in the form of a nonlinear

differential equation, and, in most cases, solving these

equations involves numerical procedures. Aziz [5] and

Krane [6] used the regular perturbation method and a

numerical solution method to present a closed form

solution for a straight convecting fin with temperature-

dependent thermal conductivity, while an alternative

approach based on the Galerkin method was used by

Muzzio [7] to obtain approximate analytical solutions.

Recently, the Adomian decomposition scheme [8] has

emerged as an alternative method for solving a wide

range of problems whose mathematical models involve

algebraic [9], differential [10], integro-differential [11],

and partial differential equations [12]. The decomposi-

tion method yields rapidly convergent series solutions

for both linear and nonlinear deterministic and sto-

chastic equations. The advantage of this method is that

it provides a direct scheme for solving the problem, i.e.,

without the need for linearization.

This paper applies the Adomian decomposition

method to a nonlinear conduction–convection heat

International Journal of Heat and Mass Transfer 45 (2002) 2067–2075
www.elsevier.com/locate/ijhmt

*Corresponding author. Tel.: +886-6-275-7575; fax: +886-6-

234-2081.

E-mail address: ckchen@mail.ncku.edu.tw (C.-K. Chen).

0017-9310/02/$ - see front matter � 2002 Published by Elsevier Science Ltd.

PII: S0017-9310 (01 )00286-1



transfer equation to derive an approximate analytical

solution. The results of the decomposition method are

then compared with those obtained from a numerical

solution, the perturbation solution and the Galerkin

approximate solution.

2. The governing equation and boundary condition

A rectangular fin with length, b, and thickness, w, is

considered. The fin tip is assumed to be insulated and a

uniform temperature is assumed at the fin base. Under

steady-state conditions, the faces of the fin are exposed

to a convective environment where the temperature, Ta,
and heat transfer coefficient, h, are assumed to be uni-

form. Fig. 1 shows an illustration of the fin geometry,

where the axial distance, x, is measured from the fin tip.

The thermal conductivity of the fin material, k, is as-

sumed to vary as a linear function of the temperature,

i.e.

k ¼ ka½1þ bðT � TaÞ�; ð1Þ

where ka is the thermal conductivity at ambient tem-

perature, and b is the slope of the thermal conductivity–

temperature curve divided by the intercept, ka.
If the Biot number, hw=k, of the fin is less than 0.1,

then the effect of heat conduction in the y-direction on

the rate of heat transfer from the fin appears to be quite

small (i.e., less than 1%) [13]. In the one-dimensional

system, the energy balance equation and the aforesaid

boundary conditions are:

ð1þ ehÞ d
2h

dx2
þ e

dh
dx

� �2

� N 2h ¼ 0; ð2Þ

X ¼ 0;
dh
dx

¼ 0; ð3Þ

X ¼ 1; h ¼ 1; ð4Þ

where

h ¼ T � Ta
Tb � Ta

; X ¼ x
b
; e ¼ kb � ka

ka
¼ bðTb � TaÞ;

N 2 ¼ Phb2

kaAc

¼ 2hb2

kaw
: ð5Þ

3. Decomposition method

The principal algorithm of the Adomian decompo-

sition method when applied to a general nonlinear

equation is in the form

Luþ Ruþ Nu ¼ g: ð6Þ

Nomenclature

Ac cross sectional area of the fin

Am Adomian’s polynomial

Ap profile area of the fin

b fin length

C integral constant

h heat transfer coefficient

k thermal conductivity

L the highest order derivative

L�1 inverse operator of L

N dimensionless fin parameter ½Phb2=kaAc�1=2
P fin perimeter

T temperature

Nu nonlinear terms

qf heat transfer rate

Qn dimensionless heat transfer

V volume of the fin

w fin thickness

x axial distance measured from fin tip

X dimensionless distance x=b

Greek symbols

b slop of the thermal conductivity–temperature

divided by the intercept ka
e thermal conductivity parameter ðkb � kaÞ=ka
h dimensionless temperature ðT � TaÞ=ðTb � TaÞ
g fin efficiency

Subscripts

a ambient

b base of the fin

e tip of the fin

dec. decomposition solution

m number of terms in the series

num. numerical solution

opt optimal

Fig. 1. Schematic diagram of a rectangular longitudinal fin.
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The linear terms are decomposed into Lþ R, while the

nonlinear terms are represented by Nu. L is taken as the

highest order derivative to avoid difficult integration

involving complicated Green’s functions, and R is the

remainder of the linear operator. L�1 is regarded as the

inverse operator of L and is defined by a definite inte-

gration from 0 to x, i.e.

½L�1f �ðxÞ :¼
Z x

0

f ðvÞdv: ð7Þ

If L is a second-order operator, L�1 is a twofold indef-

inite integral, i.e.

L�1Lu ¼ u� uð0Þ � x
ouð0Þ
ox

: ð8Þ

Operating on both sides of Eq. (6) with L�1 yields

L�1Lu ¼ L�1g � L�1Ru� L�1Nu ð9Þ
and gives

u ¼ uð0Þ þ x
ouð0Þ
ox

þ L�1g � L�1Ru� L�1Nu: ð10Þ

The decomposition technique represents the solution of

Eq. (9) as a series, i.e., u ¼
P1

m¼0 um. The nonlinear op-

erator, Nu, is decomposed as
P1

m¼0 Am.X1
m¼0

um ¼ u0 � L�1R
X1
m¼0

um � L�1
X1
m¼0

Am; ð11Þ

where

u0 ¼ uð0Þ þ x
ouð0Þ
ox

þ L�1g:

Consequently it can be written as

u1 ¼ �L�1Ru0 � L�1A0;

u2 ¼ �L�1Ru1 � L�1A1;

..

.

umþ1 ¼ �L�1Rum � L�1Am;

ð12Þ

where Am’s are Adomian’s polynomial of u0; u1; . . . ; um,
and are obtained from the formula

Am ¼ 1

m!
dm

dkm ½f ðuðkÞÞ�k¼0: ð13Þ

Eq. (13) gives

A0 ¼ f ðu0Þ;

A1 ¼
df
du

� �
du
dk

� �����
k¼0

;

A2 ¼
1

2!

d2f
du2

� �
du
dk

� �2
"

þ df
du

� �
d2u

dk2

� �#�����
k¼0

;

A3 ¼
1

3!

d3f
du3

� �
du
dk

� �3
"

þ 2
d2f
du2

� �
du
dk

� �
d2u

dk2

� �

þ d2f
du2

� �
d2u

dk2

� �
du
dk

� �
þ df

du

� �
d3u

dk3

� �	����
k¼0

;

..

.

Finally, the Am’s can be written in the following, more

convenient, form [14]:

Am ¼
Xm
m¼1

cðm;mÞf ðmÞðu0Þ; mP 1; ð14Þ

where cðm;mÞ are products of the m components of u,

whose subscripts sum to m, divided by the factorial of

the number of repeated subscripts. Thus, the Am’s are

expressed as:

A0 ¼ f ðu0Þ;

A1 ¼ u1
d

du0
f ðu0Þ;

A2 ¼ u2
d

du0
f ðu0Þ þ

u21
2!

d2

du20
f ðu0Þ;

A3 ¼ u3
d

du0
f ðu0Þ þ u1u2

d2

du20
f ðu0Þ þ

u31
3!

d3

du30
f ðu0Þ;

..

.

4. The fin temperature distribution

Following Adomian decomposition analysis, the

linear operator is defined as: Lx ¼ d2h=dX 2. Conse-

quently Eq. (2) can be written as follows:

Lxh ¼ N 2h � eh
d2h
dX 2

� e
dh
dX

� �2

¼ N 2h � eNA� eNB; ð15Þ

where

NA ¼ h
d2h
dX 2

¼
X1
m¼0

Am;

NB ¼ dh
dX

� �2

¼
X1
m¼0

Bm

are nonlinear terms. Hence, using Eq. (14) gives

A0 ¼ h0

d2h0

dX 2
;

A1 ¼ h1

d2h0

dX 2
þ h0

d2h1

dX 2
;

A2 ¼ h2

d2h0

dX 2
þ h1

d2h1

dX 2
þ h0

d2h2

dX 2
;

A3 ¼ h3

d2h0

dX 2
þ h2

d2h1

dX 2
þ h1

d2h2

dX 2
þ h0

d2h3

dX 2
;

..

.

ð16Þ
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and

B0 ¼
dh0

dX

� �2

;

B1 ¼ 2
dh0

dX
dh1

dX
;

B2 ¼
dh1

dX

� �2

þ 2
dh0

dX
dh2

dX
;

B3 ¼ 2
dh1

dX
dh2

dX
þ 2

dh0

dX
dh3

dX
;

..

.

ð17Þ

Operating on both sides of Eq. (15) with L�1
x yields

L�1
x Lxh ¼ N 2L�1

x h � eL�1
x NA� eL�1

x NB; ð18Þ

h ¼ h0 þ N 2L�1
x h � eL�1

x NA� eL�1
x NB: ð19Þ

The value of the first term can be determined as

h0 ¼ hð0Þ þ X
dhð0Þ
dX

: ð20Þ

With the boundary condition given in Eq. (3), hð0Þ is

any arbitrary constant, C.

The next iterates are determined from the following

recursive relationship:

hmþ1 ¼ N 2L�1
x hm � eL�1

x Am � eL�1
x Bm; mP 0: ð21Þ

Fig. 2. The ratio convergence test applied to the series coefficients for Adomian’s decomposition solution, as a function of the number

of terms in the series, correspond to: (a) N ¼ 1:0; (b) N ¼ 1:5; (c) N ¼ 2:0.
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Therefore, the first four iterates are expressed as:

h0 ¼ C;

h1 ¼ N 2L�1
x h0 � eL�1

x A0 � eL�1
x B0 ¼

1

2
CN 2X 2;

h2 ¼ N 2L�1
x h1 � eL�1

x A1 � eL�1
x B1

¼ 1

24
CN 4X 4 � 1

2
eC2N 2X 2;

h3 ¼ N 2L�1
x h2 � eL�1

x A2 � eL�1
x B2 ð22Þ

¼ � 1

12
eC2N 4X 4 � e

1

12
C2N 4X 4

�
� 1

2
eC3N 2X 2

�

þ N 2 1

720
CN 4X 6

�
� 1

24
eC2N 2X 4

�

..

.

Upon summing those iterates it is observed that

um ¼
Xm�1

i¼0

hi ¼ h0 þ h1 þ h2 þ 	 	 	 þ hm�1: ð23Þ

Thus, components of h are determined and written as an

m-terms approximation converging to h as m ! 1.

h ¼ C þ 1

2
CN 2X 2 þ 1

24
CN 4X 4 � 1

2
eC2N 2X 2

� 1

12
eC2N 4X 4 � e

1

12
C2N 4X 4

�
� 1

2
eC3N 2X 2

�

þ N 2 1

720
CN 4X 6

�
� 1

24
eC2N 2X 4

�
	 	 	 : ð24Þ

The coefficient, C, can be evaluated from the specific

boundary condition given in Eq. (4). The available root

Fig. 3. The differences between the computational (Adomian’s decomposition) and numerical solution at the tip temperature, as a

function of the number of terms in the series, correspond to: (a) N ¼ 1:0; (b) N ¼ 1:5; (c) N ¼ 2:0.
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of C, used for representing the temperature at the fin tip,

must lie in the interval ð0; 1Þ; otherwise, it gives rise to

physically meaningless temperature distributions and

must be discarded.

5. Convergence of the series solution

The Adomian decomposition method provides an

analytical solution in terms of an infinite power series.

The analytical solution given in Eq. (24) can be ex-

pressed in the following series form:

hðX Þ ¼
X1
m¼0

amX 2m: ð25Þ

Re‘paci [15] provides rigorous proof of the convergence

of the series solution for a more general form of the

problem. The series (25) consists of both positive and

negative terms, although not in a regular alternating

fashion. The ratio test was applied to the absolute values

of the series coefficient. This provides a sufficient con-

dition for convergence of the series for a space interval

DX ¼ ðXb � XeÞ2, in the form

lim
m!1

amþ1

am

����
���� < 1

DX
: ð26Þ

However, the approach which was preferred in this

study to demonstrate the convergence of the series was

to replace limm!1 amþ1=amj j with limm!M amþ1=amj j in Eq.

(26) where M ! large constant. The behavior of the

function f ðmÞ ¼ amþ1=amj j for increasing values of m was

then observed. The results of the evaluated value of f ðmÞ
for m ¼ 1; 2; . . . ;M (where M ¼ 20) for e ¼ �0:6–0:6
corresponding to different values of N are presented in

Figs. 2(a)–(c), respectively. It is clear from these figures

that the ratio f ðmÞ decays as m increases, obviously in-

dicating that the series (25) is convergent.

6. Accuracy of the Adomian decomposition solution

The Adomian decomposition method provides an

analytical solution in the form of an infinite power

series. However, there is a practical need to evaluate

this solution, and to obtain numerical values from the

infinite power series. The consequent series truncation,

and the practical procedure conducted to accomplish

this task, together transform the otherwise analytical

results into a computational solution, which is evalu-

ated to a finite degree of accuracy. In order to inves-

tigate the accuracy of the Adomian decomposition

solution with a finite number of terms, Eq. (2) is also

solved numerically, and the corresponding results are

compared with the Adomian solution. The numerical

method adopted in this study was the finite-difference

scheme [16], which was used to discretize the nonlinear

term. The Newton linearization scheme [17] was then

applied to linearize the discretized result. The Adomian

decomposition results were compared with the numer-

ical solution by evaluating the difference between the

temperatures given by the two methods at the fin tip

and plotting this difference as Dh ¼ hdec: � hnum:, where

hdec: and hnum: represent the Adomian’s decomposition

and numerical results, respectively. The impact of the

number of terms in the series solution, and the series

truncation process, were assessed by evaluating the

Adomian decomposition results for e ¼ �0:6–0:6 with

1–20 terms in the series, and then comparing them with

the results of the numerical method. The results of the

comparison for different N values are shown in

Figs. 3(a)–(c), respectively. It can be observed from

the figures that the shape of the difference remains

quite small, of the order of magnitude 10�3, as the

number of terms, m, increases. For e ¼ 0, the difference

is of the order of magnitude 10�5 for m > 5. As

m > 18, the maximum difference never exceeds 0.002

for any value of e. Therefore, it may be concluded that

the use of 19 terms in the series yields sufficiently ac-

curate results.

7. Fin efficiency and optimization

The heat dissipation of a fin can be obtained by in-

tegrating the convection heat loss from the fin surface,

i.e.

qf ¼
Z b

0

PhðT � TaÞdx

¼ bðTb � TaÞ
Z 1

0

PhhðX ÞdX : ð27Þ

Fig. 4. Values of the coefficient C.
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The efficiency of the fins is defined as the ratio of the

actual heat transfer rate to the heat transfer rate of the

entire fin surface, which depends on the temperature at

the base of the fin, Tb. Thus

g ¼ qf
PhðTb � TaÞ

¼
Z 1

0

hðX ÞdX : ð28Þ

The fin volume is defined as: V ¼ Acb. Thus the heat

dissipated per unit volume is

qf
V

¼
ðTb � TaÞ

R 1

0
PhhðX ÞdX

Ac

: ð29Þ

The dimensionless heat transfer is defined as

Qn ¼
qf

kaðTb � TaÞ

� �
Ap

V

� �
¼ PhAp

kaAc

Z 1

0

hðX ÞdX

¼ BN 2=3

Z 1

0

hðX ÞdX ; ð30Þ

Ap ¼ wb; B ¼
2h

ffiffiffiffiffi
Ap

p
ka

 !2=3

:

The maximum heat dissipation value occurs at the

condition when the optimum fin characteristics have

been achieved. The fin dimensions in this situation

represent the optimum fin configuration per unit vol-

ume. The optimization procedure is also performed to

Fig. 5. Temperature distribution in convecting fins with variable thermal conductivity correspond to: (a) N ¼ 1:0; (b) N ¼ 1:5;
(c) N ¼ 2:0.
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establish the profile area Ap by first expressing Qn=B as a

function of N (or b) and then searching for the optimum

value of N (or b).

8. Results

The values of coefficient C relative to the thermal

conductivity parameters, e, and the specified fin pa-

rameters, N, are calculated and indicated in Fig. 4. The

profiles show that the characteristic value of the tem-

perature at the fin tip increases with increased thermal

conductivity of the fin. However, as expected, the tip

temperature decreases with increasing fin length, with

the rate of decrease reducing as the fin length increases.

The nondimensional temperature distributions along

the fin surface with e varying from )0.6 to 0.6 are

depicted in Figs. 5(a)–(c) for different values of

N ¼ 1:0; 1:5, and 2.0, respectively. The figures also

present a comparison of the nondimensional tempera-

ture distributions obtained from the decomposition

method with those obtained from the numerical solu-

tion, the perturbation method, and the Galerkin ap-

proximate method. It will be seen that if the thermal

conductivity of the fin’s material increases with tem-

perature ðe > 0Þ, the mean temperature increases. Con-

versely, if the thermal conductivity decreases with

temperature ðe < 0Þ, the result is a decrease in the mean

temperature. This is a consequence of the nonlinearity

which is associated with temperature-dependent thermal

conductivity conditions, and which is absent for con-

stant thermal conductivity fins. It is observed that the

decomposition method results match almost exactly

with the numerical solution for all values of e and N. In
fact, the comparison is remarkably good since for

e ¼ �0:6 and N ¼ 2:0, the largest error observed never

exceeds 0.2%. By comparison, the perturbation solution

and the Galerkin solution yield significant error for

values of e exceeding �0.4. Regarding the Galerkin so-

lution, in order to yield higher accuracy for larger values

of jej, it is necessary to modify the trial function to allow

greater flexibility in approximating the true solution.

Fig. 6 presents the fin efficiency relative to e for

specified values of N. For a given value of N, it will be

seen that the efficiency, g, increases as e increases. This

may be explained by the fact that the thermal conduc-

tivity increases with temperature (e > 0), causing the

heat transfer rate to increase. The corresponding curves

obtained by numerical integration are plotted on the

same figure for comparison purposes. The results de-

rived by the Adomian decomposition method corre-

spond exactly with the results of the numerical solutions.

Fig. 6. Efficiency of convecting fins.

Fig. 7. The dimensionless heat transfer, Qn=B, as function of N

with variable thermal conductivity.

Fig. 8. Relationship between optimum N and e.
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The presented results indicate that for e ¼ �0:6 and

N ¼ 0:2 the maximum error is about 0.01.

The nondimensional heat transfers Qn=B (for a unit

fin volume) varying with N from 1 to 2 are depicted in

Fig. 7. For specified values of e, under a given profile

area, Ap, the heat transfer first rises and then falls as the

fin length increases. In general the optimum fin length

(at which Qn=B reaches a maximum value) increases as e
increases. The optimum value of N can be obtained

based upon the value of e. Therefore, the optimum di-

mensions of the convective fin with variable thermal

conductivity may be established. The relative values of

optimum N and e are shown in Fig. 8.

9. Conclusions

A nonlinear, convective, rectangular fin with variable

thermal conductivity has been analyzed using the Ado-

mian decomposition technique, in which the nonlinear

problems were treated in a manner similar to linear

problems. Linearization, approximation, and assump-

tion are unnecessary during the analytic processes of the

decomposition method. The decomposition method of-

fers many advantages over other methods, including

faster convergence and higher accuracy, and it may be

used to solve the problems associated with the complex

conditions presented by fin boundaries and geometries.
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